W. Marczewski · J. Hennig · C. Gebhardt The *Potato virus S* resistance gene *Ns* maps to potato chromosome VIII

Received: 19 November 2001 / Accepted: 17 December 2001 / Published online: 22 June 2002 © Springer-Verlag 2002

Abstract The dominant allele Ns confers in potato resistance to Potato virus S (PVS). To identify the chromosomal location of Ns, we mapped the Ns-linked marker SCG17₄₄₈ and the ISSR marker UBC811₆₀₀ to linkage group VIII of the RFLP map of a population that did not segregate for Ns. The map position of the Ns locus on chromosome VIII was confirmed with the detection of linkage between Ns and three RFLP markers, GP126, GP189 and CP16, known to be located in a corresponding region on potato chromosome VIII. PCR-based assays were developed for these RFLP markers. The PCR primers specific for GP126 generated polymorphic products (STS marker). In the case of markers GP189 and CP16, informative polymorphism was revealed in the Ns population after digestion with the restriction enzymes HaeIII and HindIII, respectively. The genetic distance between Ns and the closest CP16 locus was 4.2 cM.

Keywords *Potato virus* $S \cdot \text{Resistance gene } Ns \cdot Solanum tuberosum \cdot \text{Genetic mapping} \cdot PCR markers$

Introduction

The dominant *Ns* gene, originating from *Solanum tuberosum* ssp. *andigena* (Baerecke 1967), confers resistance to *Potato virus S* (PVS). Plants expressing *Ns* re-

Communicated by G. Wenzel

W. Marczewski (💌) Plant Breeding and Acclimatization Institute, Platanowa 19, 05831 Młochów, Poland e-mail: w.marczewski@ihar.edu.pl Fax: 48-22-7299247

J. Hennig Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02106 Warsaw, Poland

C. Gebhardt Max-Planck Institut für Züchtungsforschung, Carl von Linne Weg 10, Cologne, 50829 Germany main symptomless, and no PVS titers develop in enzyme-linked immunosorbent assays (ELISA). In graft inoculation tests, the resistant plants react with a fading of the foliage of shoots developed from the axillary meristems as a result of the hypersensitive reaction of the plants to PVS infection. Depression of tuber formation in such plants is also observed (Marczewski et al. 1998). A cross between diploid potato (Solanum tuberosum L.) clones DW 91-1187 and DW 83-3121 was used to identify random amplified polymorphic DNA (RAPD) (Marczewski et al. 1998), sequence-characterized amplified region (SCAR) (Marczewski et al. 2001b) and intersimple sequence repeat (ISSR) (Marczewski 2001) markers linked to the Ns locus. The markers SCG17₃₂₁ (Marczewski et al. 2001b) and UBC811₆₆₀ (Marczewski 2001) are currently being used for indirect selection of the Ns resistance gene in diploid breeding programs at the Plant Breeding and Acclimatization Institute at Młochów.

Nineteen single dominant genes (*R* genes) for resistance to various pathogens have been positioned on the molecular maps of potato using DNA markers. Seven genes confer resistance to important potato viruses: *Potato virus Y* (PVY), *Potato virus X* (PVX) and *Potato virus A* (PVA) (reviewed in Gebhardt and Valkonen 2001). A single gene might also confer resistance to *Potato leafroll virus* (PLRV) in potato (Marczewski et al. 2001a)

Here, we report the chromosomal localization of the *Ns* locus based on mapping the *Ns*-linked markers on the restriction fragment length polymorphism (RFLP) map of population K31 (Schäfer-Pregl et al. 1998).

Materials and methods

Plant materials

The parental diploid potato (*Solanum* tuberosum L.) clones, DW 91-1187 (susceptible) and DW 83-3121 (resistant), and 119 F_1 hybrids (Ns population) were available to map the *Ns* locus. The resistance test to PVS infection has been described by Marczewski et al. (1998). Sixty and fifty-nine F_1 individuals were determined

as being susceptible and resistant to PVS infection, respectively. The 1:1 segregation ratio of resistant versus susceptible F_1 plants indicated that the resistant parent was heterozygous for the single dominant Ns gene.

Polymerase chain reaction (PCR) amplification

DNA extraction, PCR amplification with a primer UBC811 and electrophoresis were performed as previously described (Marczewski 2001). The PCR conditions used to amplify the DNA fragment SCG17448 and patterns of the products generated after MunI digestion were as described by Marczewski et al. (2001b).

PCR analyses of RFLP markers GP126, GP189 and CP16 were performed in 20 mM Tris-HCl pH 8.4, 50 mM KCl, 2.5 mM MgCl₂, 0.1 mM of each deoxynucleotide, 10 ng of each primer, 0.4 U Tag DNA polymerase (Gibco BRL) and 20 ng of genomic DNA in a final volume of 20 µl. The primer sequences, listed in Table 1, were designed according to the Primer Select Program (DNA STAR, Madison, Wis. version for Windows, 3.10) based on DNA sequences of the RFLP markers (C. Gebhardt, unpublished). The PCR parameters were: 94 °C for 60 s, followed by 35 cycles of 94 °C for 15 s, 55 °C for 15 s, 72 °C for 60 s, and a final extension time of 3 min at 72 °C.

Mapping of the Ns locus

DNA samples of parental lines P3 and P38 and 87 F1 plants of the diploid mapping population K31 (Schäfer-Pregl et al. 1998) were used to map the two Ns-linked markers SCG17448 (Marczewski et al. 2001b) and UBC811₆₆₀ (Marczewski 2001) on the RFLP map covering the 12 potato chromosomes that was constructed in the K31 population. Scoring and linkage analysis of PCR-derived DNA fragments in the K31 population was the same as for RFLP

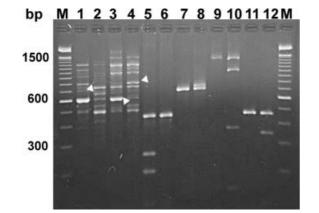
Table 1 Primer sequences used for PCR amplification of the RFLP loci GP126, GP189 and CP16

Marker name	Forward and reverse primer sequences (5' to 3')			
GP126	TAGCCGTTGCCACCCTACA TTGTTGAAGTCTAAGAAATCTGTT			
GP189	AGTTGAGGAGCTGTTTGTGA AGGCTTTAGTATTTCTGTGTATTT			
CP16	CTTAAACGCGTCAAGTGAAACT TTAGGGACATACAAACAAACCTCA			

fragments and has been described by Ritter et al. (1990), and Schäfer-Pregl et al. (1998).

Linkage analysis between PCR markers and Ns was performed using LINKAGE-1 software (Suiter et al. 1983). Map distances in centiMorgans (cM) were calculated from recombination frequencies by using Kosambi's mapping function (Kosambi 1944).

Results and discussion


Polymorphism of a single Ns-linked PCR fragment of 448 bp, designated SCG17₄₄₈ (Marczewski et al. 2001b), was revealed after MunI digestion in the parental lines of the K31 cross (Fig. 1, lanes 5 and 6). The Ns-linked ISSR marker UBC811₆₆₀ (Fig. 1, lane 2) was not amplified in the parental DNA samples. Instead, a 600-bp ISSR product was observed in the parent P3 (Fig. 1, lane 3), while a 800-bp ISSR product was amplified in the parent P38 (Fig. 1, lane 4). This indicated the presence of different insertion/deletion alleles of the UBC811₆₆₀ marker in the K31 population and/or the detection of different loci.

Eighty-seven F₁ clones of the K31 population were screened for segregation of both MunI-digested $SCG17_{448}$ and the two ISSR fragments. The 800-bp ISSR fragment mapped on linkage group XII of the K31 map, linked by 1 cM to the RFLP locus GP183. The 600-bp ISSR fragment and the marker SCG17448 both mapped to linkage group VIII. The two marker fragments were linked in repulsion by 2 cM. The most closely linked RFLP loci (1-5 cM) were GP293(b) and GP171 (Schäfer-Pregl et al. 1998). To confirm its position on chromosome VIII, we mapped the Ns locus relative to three extra markers, GP126, GP189 and CP16, that map to the same region on potato chromosome VIII as GP171 (Gebhardt et al. 1991) in the Ns population. PCR performed with GP126-specific primers resulted in polymorphic PCR products (STS, sequence tagged site). Two DNA fragments, 750 bp and 700 bp in length, were amplified in the resistant parent DW 83-3121 (Fig. 1, lane 8). The 750-bp fragment was not amplified

 Table 2
 Summary of linked
loci, phenotypic frequencies, χ^2 values for goodness-of-fit to expected segregation ratio (two-point: $\chi^2 AB$) and recombination frequency between loci (SE standard error)

^a Phenotypes: A or B corresponds to the presence of a marker or to PVS-resistant clones; a or b corresponds to the absence of a marker or to PVS-susceptible clones ^b Significant at the 0.01 probability level

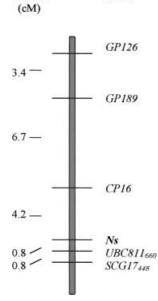

Locus		Phenotypes ^a				$\chi^2 AB^b$	Recombination
А	В	AB	Ab	aB	ab		frequency \pm SE
GP126	Ns	55	9	4	51	73.2	10.9±2.9
GP189	Ns	56	8	3	52	79.7	9.2±2.7
CP16	Ns	58	4	1	56	100.1	4.2 ± 1.9
UBC811 ₆₆₀	Ns	59	1	0	59	115.1	0.8 ± 0.8
SCG17448	Ns	58	1	1	59	111.1	1.7 ± 1.2
GP126 GP126	GP189	62	2	2	53	103.5	3.4±1.7
GP126	CP16	58	6	4	51	82.4	8.4±2.5
GP126	UBC811 ₆₆₀	56	8	4	51	76.1	10.1±2.8
GP126	SCG17448	55	9	4	51	73.2	10.9 ± 2.9
GP189	CP16	59	5	3	52	89.2	6.7±2.3
GP189	UBC811 ₆₆₀	57	7	3	52	82.7	8.4±2.5
GP189	SCG17448	56	8	3	52	79.7	9.2 ± 2.7
CP16	UBC811 ₆₆₀	59	3	1	56	103.7	3.4±1.7
CP16	SCG17448	58	4	1	56	101.1	4.2 ± 1.8
UBC811 ₆₆₀	SCG17 ⁴⁴⁸	59	1	0	59	115.1	0.8 ± 0.8

Fig. 1 Electrophoretic patterns of the ISSR, SCAR, STS and CAPS markers in the Ns and K31 populations. *Lanes: 1*, and 2 PCR products amplified with ISSR primer UBC811 in the susceptible (DW 91-1187) and resistant (DW 83-3121) parents of the Ns population, respectively; *3*, *4* PCR products amplified with UBC811 from the parents P3 and P38 of the K31 population, respectively; *5*, *6* SCG17₄₄₈ digested with *Mun*I in P3 and P38, respectively; *7*, 8 STS marker GP126 in DW 91-1187 and DW 83-3121, respectively; *9*, *10* CAPS marker GP189 digested with *Hae* III in DW 91-1187 and DW 83-3121, respectively; *I1*, *12* CAPS marker CP16 digested with *Hin*dIII in DW 91-1187 and DW 83-3121, respectively; *M*100-bp ladder. UBC811₆₆₀ (linked with *Ns*), UBC811₆₀₀ and UBC811₈₀₀ are indicated by arrowheads

Distance

Fig. 2 Genetic map of the potato chromosome VIII region containing the *Ns* gene for PVS resistance

Locus

in the susceptible parent DW 91-1187 (Fig. 1, lane 7). PCR amplification with GP189-specific primers revealed a single band of 1,500 bp in both parents. Among the restriction enzymes tested for fragment length polymorphism of the PCR products, *Hae*III, *EcoR*I and *Alu*I generated informative, segregating DNA fragments (CAPS, cleaved amplified polymorphic sequence). The 1,500-bp PCR fragment amplified in the susceptible parent was not cleaved with *Hae*III (Fig. 1, lane 9), whereas three bands of 380 bp, 1,100 bp and 1,500 bp were observed after *Hae*III digestion of the PCR product obtained from the resistant parent (Fig. 1, lane 10). The PCR products obtained with primers for the cDNA marker CP16 were 460 bp long. Of the five restriction enzymes tested, an informative polymorphism was observed after *Hin*dIII digestion (Fig. 1, lanes 11 and 12).

The STS marker GP126 and the CAPS markers GP189 and CP16 were tested for linkage to the *Ns* locus in 119 progeny of the *Ns* population (Table 2). The map position of *Ns* was found to be 4.2 cM (5 recombinants) distal to *CP16* on chromosome VIII. The order of the *GP126*, *GP189* and *CP16* loci was the same as in the previously published map of a different mapping population (Gebhardt et al. 2001). The SCAR marker SCG17₄₄₈ and the ISSR marker UBC811₆₆₀ were located distal to *Ns* (Fig. 2).

Ns is located in a region of potato chromosome VIII where no other *R* gene has been identified so far (Gebhardt and Valkonen 2001). Among several putative QTL (quantitative trait loci) for leaf resistance to *Erwinia carotovora* ssp. *atroseptica* mapped in yet another population (Zimnoch-Guzowska et al. 2000), QTL *Eca8B* may be located in a similar segment of linkage group VIII as the *Ns* locus. The localization of the *Ns* locus extends the potato function map for pathogen resistance and is a useful starting point for the map-based cloning of the *Ns* gene, which will be the subject for our further studies.

References

- Baerecke M (1967) Überempfindlichkeit gegen das S-virus der Kartoffel in einembolivianischen Andigena-Klon. Züchter 37: 281–286
- Gebhardt C, Valkonen JPT (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102
- Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufmann H, Thompson RD, Bonierbale MW, Ganal MW, Tanksley SD, Salamini F (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57
- Gebhardt C, Ritter E, Salamini F (2001) RFLP map of the potato. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants, vol. 6 Kluwer, Dordrecht, pp 319–336
- Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175
- Marczewski W (2001) Inter-simple sequence repeat (ISSR) markers for the Ns resistance gene in potato (Solanum tuberosum L.). J Appl Genet 42(2):139–144
- Marczewski W, Östrowska K, Zimnoch-Guzowska E (1998) Identification of RAPD markers linked to the *Ns* locus in potato. Plant Breed 117:88–90
- Marczewski W, Flis B, Syller J, Schäfer-Pregl R, Gebhardt C (2001a) A major QTL for resistance to *Potato leafroll virus* (PLRV) is located in a resistance hotspot on potato chromosome XI and is tightly linked to *N*-gene-like markers. Mol Plant-Microbe Interact 12:1420–1425
- Marczewski W, Talarczyk A, Hennig J (2001b) Development of SCAR markers linked to the Ns locus in potato. Plant Breed 120:88–90

- Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654
- Schäfer-Pregl R, Ritter E, Concilio L, Hesselbach J, Lovatti L, Walkemeier B, Thelen H, Salamini F, Gebhardt C (1998) Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theor Appl Genet 97:834–846
- Suiter KA, Wendel JF, Case JS (1983) LINKAGE-1: a Pascal computer program for the detection and analysis of genetic linkage. J Hered 74:203–204
- Zimnoch-Guzowska E, Marczewski W, Lebecka R, Flis B, Schäfer-Pregl R, Salamini F, Gebhardt C (2000) QTL analysis of new sources of resistance to *Erwinia carotovora* ssp. *atroseptica* in potato done by AFLP, RFLP, and resistance-gene-like markers. Crop Sci 40:1156–1167